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We examine the possibility of studying turbulent pulsations of the flow velocity by correlation and spectral 
analysis of optical signals from two or more points of a stream. 

i. Convective velocity measurements. Correlation analysis has been widely used for measuring the flow velocity 
by means of various probes: hot-wire anemometers [I-3], inductive sensors [4], pressure sensors [3], and so on. 
The convective flow velocity is found by correlation analysis of the signals obtained by these probes. 

By convective velocity we usual ly  mean the ra te  of t ranspor t  of the components of some field: p r e s s u r e ,  
tempera ture ,  conductivity, or  the velocity field itself.  We can also speak of the convective velocity of the optical 
fluctuation field. 

If we record  the fluctuations of some physical quantity at two points located along the s t ream direct ion,  the t ime 
shift of the peak of the corresponding c r o s s - c o r r e l a t i o n  function is cus tomar i ly  identified with the charac te r i s t i c  
t ranspor t  t ime of this quantity f rom one measu re me n t  point to the other. If the pulsat ions are s ta t ionary the shift will 
correspond to the average nonhomogeneity travel  time, i . e . ,  their loca l -average  t ranspor t  velocity. If the fluctuations 
are  unsteady, f luctuations of l a rger  amplitude yield a l a rger  contribution to the shift of the c r o s s - c o r r e l a t i o n  curve 
and thereby de te rmine  the magnitude of the measured  convective velocity. 

This technique for  de te rmin ing  the velocity was used ini t ia l ly  for measur ing  the convective velocity of the 
velocity field itself,  s tar t ing  from the Taylor hypothesis on "frozen" turbulence.  In accordance with this hypothesis, if 
the turbulence in tensi ty  is not high the velocity pulsat ions at some point in the flow will be the resu l t  of t ranspor t  
through the given point with the convective velocity of the spatial  s ignature  of the s t ream (here s ignature  means the 
velocity field itself),  i . e . ,  

~,(x, t)= v(x-- Vt, (!) (i.I) 

where x is the coordinate of the point and u is the convective velocity. In this case the cross-correlation function of 
the velocity pulsations at two points located at a distance L from one another along the stream has the form 

R(T): <v(x, t)v(x+L, t q-~))= (v(x, t)v(x, t--LVL-I-}-T)) (1.2) 

It is obvious that for 1- = L/V L the velocity pulsat ions at the two points will be re fe r red  to the same phase and the 
c r o s s - c o r r e l a t i o n  function will reach its maximum value. Hence follows di rec t ly  the technique for de termining  the 
convective velocity from the t ime shift of the peak of the veloci ty-pulsa t ion c r o s s - c o r r e l a t i o n  function at two points. 

However, Lin showed on the basis of the Navier-Stokes equations that the Taylor hypothesis is valid only if the 

turbulence intensity, viscous forces, and tangential stresses are small. Otherwise it is necessary to account for the 

influence of the average and fluctuating tangential stresses, which alter the turbulence structure continuously. Under 
these conditions we can no longer speak of some constant convective velocity. It has been shown by several authors 

[i-41 that we can speak only of the convective velocity V(k) of some definite wavenumber. Thus, if the velocity field is 
considered as the finite sum of uneorrelated plane waves of different orientation and length with random amplitudes and 

phases, then the convective velocity V c of a specific wave number can be defined as its most probable transport 
velocity, i.e. , for V = V c the spectral density function W(k, V) reaches its peak, 

0w(k, v)~ 
~ j v = v c =  o (1.3) 

It is obvious that in hot-wire measurements this velocity will to some degree correspond to the time shift of the 
peak of the cross-correlation function of filtered signals of definite frequency (more precisely, some finite narrow 
frequency band). 
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In this case the ove r -a l l  convective velocity V, can be determined as the value for which 

oW(V)], 
OV Iv=v,= O, W(V)= W(k, V) dk 

This velocity will not necessa r i ly  correspond to the shift of the peak of the over -a l l  (unfiltered) c ro s s -  
cor re la t ion  curve, since as we have noted previously  this shift may be determined not by the t ranspor t  velocity of the 
most  probable wave numbers  but p r ima r i l y  by the t ranspor t  velocity of the wave numbers  corresponding to the 
pulsat ions with maximum amplitude. 

The cor re la t ion  method was later  used to measu re  the t ranspor t  velocity of other physical  fields,  e . g . ,  the 
p r e s s u r e  fields [3]. 

In [4] a s imi l a r  method was used to measu re  the convective velocity of the quantity aV in a p lasma jet (a is the 
p lasma e lec t r ica l  conductivity; V is velocity). The ~V fluctuations were detected with the aid of cur ren t s  induced by 
the fluctuations in measur ing  coils as the p lasma traveled in an external  magnetic field. 

The trend toward remote  measu remen t  methods, which do not introduce d is turbances  into the s t ream,  and also 
the trend toward increased  spatial resolut ion,  has led to the use of the cor re la t ion  method for optical measuremen t s .  
In this case the signal sources  can be fluctuations of the re f rac t ion  coefficient,  b r ightness ,  density,  impuri ty  
concentrat ion,  and so on. The t ranspor t  of the optical nonhomogeneit ies is identified with the t ranspor t  of the gas 
s t r eam itself. 

For  example, in [5, 6] recordings  were made of natural  fluctuations of the luminosi ty of a p lasma jet  at two axial 
points,  and the shift of the c r o s s - c o r r e l a t i o n  function peak was used to calculate the propagation velocity of these 
fluctuations.  

In [7] Lhe convective velocity of the optical f luctuation field was determined from the shift of the peak of the 
c r o s s - c o r r e l a t i o n  function of signals f rom two t ransmit ted  beams which were absorbed by the medium. 

In order  for absorption to take place, liquid ni trogen or water was sprayed into the s t ream to form a finely 
d ispersed  fog. The beams were directed perpendicular  to one another and to the flow axis, and the distance between 
the beams in the flow direct ion was varied.  The c r o s s - c o r r e l a t i o n  function of the signals f rom two photodetectors was 
found for different  dis tances between the beams.  

Thus, the cor re la t ion  technique has been used in quite varied measuremen t s  as a technique for finding the 
convective velocity of the quantit ies being measured.  The p r imary  charac te r i s t ic  is the time shift of the peak of the 
c r o s s - c o r r e l a t i o n  function. The resu l t ing  value is the mathemat ical  expectation of the velocit ies and does not yield any 
represen ta t ion  of the scat ter  of the veloci t ies  around this value. 

At the same time the c r o s s - c o r r e l a t i o n  function spect rum contains more  complete informat ion on the flow 
velocity than can be obtained from the shift of the function peak alone. 

The following section is devoted to examination of this question. 

2. Effect of velocity pulsat ions on the frequency spect rum of optical f luctuations.  We consider  the random 
uniform isotropic field N(x,t) of the optical nonhomogeneities of the medium in question, whose t ranspor t  we identify 
with the motion of the fluid i tself  under  the assumption that it is incompress ib le .  

As is known [8], such a field can be represented in the form of the superposition of waves of different orientation 

with random amplitude and phase: 

N(x) Ie~UxdZ(k) (2.1) 

Here k is the wave vector  and Z is the complex amplitude and the integral  extends over the ent i re  wave vector 
space. The temporal  var ia t ions  of the field can be descr ibed on the basis  of the corresponding t ranspor t  model. 

In the case of the frozen turbulence model, now applied to the optical nonhomogeneity field, all the time 
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var ia t ions  of N(x, t) at a point of the s t r eam are, caused by t ranspor t  of the spatial  field d is t r ibut ion with constant  
velocity. However, such a model does not allow us to find the velocity pulsat ions in the s t ream.  

It is obvious that the more  general  model will be that in which the t ranspor t  of the f rozen field takes place with a 
t ime-va r i ab le  velocity. In this case we obtain in place of (1.1) 

t 

With aeeount for the given t ranspor t  eonditions,  (2.1) takes the form 

t 

N (x, t ) =  Iexp [ i k S v ( ~ ) d ,  l d Z ( k  ) (2.3) 
" 0 

If in this case v (~) = <v> + v' (~), where <v> is the average velocity and v' (~) is the pulsat ive component, then 

t 

0 

It follows f rom (2.4) that N(x, t) is the resu l t  of frequency modulation by the random process  v'(t) of the random 
function e(x, t), equal to 

e (x, t) = S e~k<~>~ dZ (k) (2.5) 

This function corresponds  to the signal without velocity pulsat ions (model of f rozen field t ranspor ted  with 
constant  velocity). The existence of velocity pulsat ions leads to the appearance of frequency modulation. In this case 
the frequency deviation of each e lementary  harmonic  of the process  e(x, t) is proport ional  to the mean- squa re  velocity 
pulsat ion ]/-< v~2) in the x-di rec t ion ,  and the effective modulation frequency is determined by the velocity pulsation 
cor re la t ion  in terval ,  i .e .  , by the Euler  in tegral  t ime scale  [9]. 

In fact, the Kampe de Fe r i e t  re la t ion  
t t 3\ 

o 

(2.6) 

is valid for the coordinate var iance  in (2.4). In (2.6) Rv~ (z) is  the cor re la t ion  coefficient between the velocity 
pulsat ions at different  t imes and <vx~> is the velocity var iance .  

Consequently, the amplitude of the modulating function will be the magnitude of the mean square velocity 
pulsation,  and the frequency deviation of each i - th  e lementary  harmonic  of the process  e(x, t) can be found from the 
formula  

(2.7) 

However, the effective modulation period in the model adopted will obviously be de termined by the ra t io  of the 
space scale A, for which par t ic le  motion takes place essent ia l ly  only in one direct ion,  to the magnitude of the mean -  
square velocity pulsat ion 

T,~ = A I (v~> '/2 = A (v~)'/=/ (v~ ~) (2.8) 

But the numera to r  on the r ight-hand side of (2.8) is s imply the eddy diffusion coefficient D, which can be found 
f rom (2.6) by pass ing to the l imit  as t ~ oo [10]. Then 

D = <~ (t)) / 2t = <vx ~) $-E (2.9) 

where $-E is the Euler integral  time scale.  

Substituting (2.9) in place of the numera to r  in the r ight-hand side of (2.8), we obtain 

T m =  5E or ~,~ = i / $-E (2 .10)  
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Thus the effective modulation frequency is determined di rec t ly  by the Euler integral  t ime scale.  

This has definite physical meaning,  since the magnitude of the in tegra l  time scale can serve  as a measure  of the 
longest  t ime interval  in the course  of which t ranspor t  of the field space dis t r ibut ion takes place on the average in the 
given direct ion,  i . e . ,  it will be the maximum modulation period. 

It follows from (2.10) that the l a rge r  the integral  t ime scale  the lower the effective modulation frequency. In the 
l imit ing case, when ~ E = o% 2m = 0, i. e . ,  there is no modulation ( t ranspor t  of the frozen field with constant  velocity). 
On the other hand, when ~- E - -  0, ~m - -  ~o, i . e . ,  when the nature of the velocity pulsat ions approaches white noise, 
the modulation frequency becomes infinitely large.  

Thus, on the basis  of the model of the f rozen field t ranspor ted with var iable  velocity we can conclude that the 
recording  of the optical f luctuations includes informat ion on the turbulence in the form of the modulating function. 

3. Methods for separat ing the turbulence charac te r i s t i c s  f rom the optical f luctuation records .  In accordance with 
the adopted t ranspor t  model, the var ia t ion of the frequency of each e lementary  harmonic  of the modulated process  e(x, 
t) is defined by the same modulating function v~(t), i . e . ,  

coj(t)=o)j-[-~-~j vx'(t) 

Then the e lementary  function has the form 

(3.1) 

t t 

yj ----- V(o)j)oos o)jt-~- vx'(t)dt 4ziV(o)jlsinVo)jt + (-x-v= (t)dt] 
�9 1. ~o "~j J 

o 3 

(3.2) 

Let 

v~,'(t)= ~, v2  ~', v~= I v(a)da 
v ~ N  ~ v - - a  

( , ~ = 0 , •  . . . .  i N )  

Here V(12) is white noise. Then 

N 

yj =" V (o)~) [cos oJ/ ~ ~,em~' sin ~o/] -F iV (o~i) 
N 2~V~ 

• Isin {ojt + ~ ~e ~a'~t cos o)it], ~ ~ ~,i~2~ 
v ~ - - N  

(3.3) 

under  the assumption of smal lness  of/~, equal to the sum of the fly" 

Per fo rming  the summat ion  over all  the e lementa ry  harmonics ,  we find the express ion  for the FM signal for the 
case of modulation of one random process  by another random process  with smal l  fl: 

--00 --CO 

Thus, frequency modulation of the random process  s(t) by the random process  vx(t) in the case of smal l  fl 
reduces  to the product of s(t) by Vx(t). The la t ter  is some d imens ionless  velocity whose s ta t is t ical  charac te r i s t i c s ,  
however, will be completely identical to the s ta t is t ical  charac te r i s t i c s  of vx(t). Thus, we can say that the modulation 
in this case reduces  to the product of the random processes  themselves,  i . e . ,  the modulation is of the amplitude 
modulation type. 

Let us consider  what the condition of smal lness  of fi means.  Since 2n I i~ =~ ~j I(vx>, we obtain 

(3.5) 
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The f i r s t  f ract ion under  the summat ion  sign is the ra t io  of the modulated harmonic  frequency to the modulating 
frequency, and the second is the rat io of the amplitude of the corresponding velocity pulsat ion harmonic  to the average 
s t r eam velocity. The f i r s t  f ract ion charac te r izes  the re la t ionship between the average d imensions  of the optical 
nonhomogeneit ies and the eddies, the second r ep re sen t s  the intensi ty  of the turbulent  velocity pulsat ions.  Thus, the 
assumption indicated above imposes  a corresponding l imi ta t ion  on the ra t io  of the d imens ions  of the optical 
nonhomogeneit ies to the d imension of the eddies as a function of the turbulence intensity.  For  low turbulence intensi ty 
the rat io of the average d imensions  of the nonhomogeneit ies to the d imensions  of the eddies can be large, and 
conversely ,  in the p resence  of high turbulence intensi ty the dimensions  of the optical nonhomogeneities must  be less  
than the eddy dimensions .  

Express ion (3.4) makes it  possible to find the optical fluctuation spect rum at a fixed s t r eam point in te rms  of the 
spect ra  of the modulated and modulating processes .  

In fact, ff the p rocesses  eft) and Vx(t) are  s ta t i s t ica l ly  independent the cor re la t ion  function X(t)of  the f requency-  
modulated process  will be 

(3.6) 

Hence 

oo 

- - o o  

(3.7) 

Since Sv,(~) and Sv(t2)~ after be ingnormal ized ,  are ident ica l ,  we can using (3.7) separa te  the velocity pulsat ion 
spect rum if Se(w) is known, and the la t ter ,  as will be shown later ,  can be found by using the s t ruc ture  function. 

Thus, in the case of ideal realization of the adopted frozen-field model the single-point correlation and the 
corresponding spectrum can be used to identify the turbulence characteristics. However, velocity pulsations having a 
different direction with relation to the average velocity vector modulate the basic process differently. We can identify 
the influence of pulsations having a given direction (longitudinal pulsations, for example) by processing the signals 
from two points. In this case the cross-correlation function identifies the frequency-modulated signal in the given 
direction, and therefore the cross-correlation function spectrum will carry information on both the magnitude of the 
mean-square velocity pulsation in the given direction and the one-dimensional spectra of the modulated and modulating 
processes [6]. Moreover, the structure function of the signals from two points of the stream identifies the modulated 
signal in the given direction and its spectrum will correspond to the Se(oJ) spectrum. 

In fact, let us assume that at the f i r s t  point of the s t r eam there is recorded the signal  X1 (t) = [! -~ v~* (t)]e (t), 
and at the second point the same signal  shifted in time by the amount ~? : 

x2 (t) = [I + v~* (t + ~)]~ (t + ~) 

The time shift V is a r e su l t  of the fact that a pa r t i cu la r  nonhomogeneity, after pass ing the f i r s t  point with the 
velocity corresponding to the field t ranspor t  velocity at the time t, passes  the second point with the veloci ty  
corresponding to the t ranspor t  velocity at the t ime (t + v). 

Then 

D .... (~) = <[X1 ( t ) -  X2(t-',- ~)]2> (3.8) 

= 2 [K~ (0)~- K~ (0) K~,~, (0)] -- 2K~r (~l) [t + K~,~, (~l)] 

We see from (3.8) that velocity pulsat ions which are slow in compar ison with 77 have no effect on the s t ruc ture  
function. In this case,  if the spectral  density of the velocity pulsat ions with frequency higher than 1/~ is negligibly 
smal l  the s t ruc ture - func t ion  spect rum will correspond to the spectrum of the s t r eam "signature" pulsat ions,  i . e . ,  it 
will correspond to the spect rum of the frozen field t ranspor ted  with constant  velocity. 

Moreover,  it follows from (3.8) that in the absence of velocity pulsat ions the c r o s s - c o r r e l a t i o n  function coincides 
with the s t ruc ture  function to within a constant  factor.  Thus, comparison of the spect ra  of the s t ruc ture  and c r o s s -  
cor re la t ion  functions makes it possible  to es tabl ish  the presence  or absence of the modulation effect owing to velocity 
pulsat ions.  
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41 Measured pa ramete r s .  The following assumptions were made in the method in question for the measu remen t  
of turbulence:  

1) the optical nonhomogeneity field is frozen within the l imits  of the measu remen t  basel ine;  

2) the recorded optical fluctuations are  s tat ionary funct ions in the course  of the rea l iza t ion  time; 

3) the velocity pulsat ions are slowly varying time functions in compar ison with the modulated process  (signature 
of the frozen field, t ransported with constant  velocity); 

4) the optical nonhomogeneity field and the velocity field are statistically independent. 

As noted previously,  under these assumptions  the average s t r eam velocity is  determined by the t ime 
corresponding to the shift of the peak of the c r o s s - c o r r e l a t i o n  function of the optical s ignals  f rom the two s t r eam 
points. 

The frequency deviation in the c ros s -co r re l a t ion - func t ion  spect rum is proport ional  to the mean- squa re  velocity 
pulsation. If we assume that the c ross  spect ra l  density function Sxy(C0) repeats  the frequency probabil i ty  density 
dis t r ibut ion law for the f requency-modulated signal in a given direction,  then the magnitude of the effective deviation 
Awef f can be calculated using the formula 

o~ c o  

The la t ter  is in turn re la ted  with the magnitude of the mean- squa re  velocity pulsation by (2.7). 

Since the mos t  probable (carr ier )  frequency of the modulated process  is proport ional  to the average s t r eam 
velocity, the rat io of the frequency deviation to the c a r r i e r  frequency yields di rect ly  the re la t ive  intensi ty of the 
turbulence,  i . e . ,  

ao~ <v~ ~ (t)>'/~ 
~00 - <vx> 

(4.2) 

Relation (3.7), considered as an express ion for the spec t rum of the f requency-modulated signal in a given 
di rect ion (to which corresponds the c ross  spect ra l  densi ty of the optical s ignals  f rom the two points), makes it  possible  
to identify the spect rum of the velocity pulsat ions in the given direct ion.  In this case, as indicated above, it is  advis-  
able to compare Sxy(r ) with the s t ruc ture- func t ion  spect rum Se (r in order  to refine the boundaries  of the modulated 
p rocess .  

Along with the local flow charac te r i s t i cs ,  identifiable for a given flow direct ion by analysis  of the signals f rom 
two points of the s t ream,  if there are a large number  of measu remen t  points it is obviously possible  to obtain such 
p a r a m e t e r s  as turbulent  s t r e s ses ,  flow-field t ime-var i a t ion  charac te r i s t i cs ,  average eddy l ifet ime, and so on. 

5. Examples of exper imental  resul ts .  F igure  1 shows osc i l lograms represen t ing  the intensi ty of the light 
scat tered by the natural  microscopic  suspended mat ter  present  in a water s t ream.  The s t ream is i l luminated by a light 
beam from a he l ium-neon l ase r  directed along the s t ream.  The scat tered radia t ion is recorded f rom two flow regions 
with l inear  d imens ion  of order  0.3 ram, spaced 2.16 mm from one another in the s t reamwise  direct ion,  for two flow 
veloci t ies :  9.4 and 35.2 cm/ sec .  The points were located on the center l ine  of a rec tangular  channel with c ross  section 
12.5 • 28.6 mm, 

We see from the osc i l logram that the signals at the two points are  highly correla ted,  and the signal f rom the 
downstream region lags by some time re la t ive  to the signal from the f i r s t  region. 

Figure 2a shows curves  of es t imates  of the c r o s s - c o r r e l a t i on  functions for four flow regimes  in the same 
channel. The flow veloci t ies  are ,  respect ively,  9.4, 17.6, 18.8 and 35.2 era /see  (Fig. 1 shows the signals for flows 1 
and 2). 

We see that inc rease  of the flow velocity leads to reduct ion of the t ime shift corresponding to the peak of the 
c r o s s - c o r r e l a t i o n  function. The posit ion of this peak can be used to de termine  the average flow velocity. 
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The average velocity values obtained by the correlation method agree to within • with the values found by the 

frequency method [ii] and those found by measuring the water discharge rate; the latter values were determined to 
within m2%. 

^ ~ ^ _  A ~ , , A '  

2 

" V t,J " V "  ~ ~ - V ~  " 

~ , 0.~06 ' 00Z ~oq ~ , s e c  

Fig~ 1 

Curve 3 in Fig. 2a corresponds  to subcr i t ical  flow, and curve 4 is for supercr i t iea l  flow. We see from these 
that change of the average velocity upon t ransi t ion through the cr i t ica l  value a l ters  markedly  the the smal l  curves 

frequency of the periodic component of the c r o s s - c o r r e l a t i o n  function. 

LO fl , 

gs ! ! 

~  " - F  "1 o . , 

o.,t-A'i ' 7 !  0 1100 1 i 100 Z00 

Fig. 2 

The c ros s -co r re l a t ion - func t ion  spect ra  Sxy(W) for the f i rs t ,  third, and fourth flow regimes  are also shown in 
Fig. 2b (solid curves).  Also shown are  the curves  of the s t ruc ture- func t ion  spect rum Ss(~) (dashed curves).  As we 
noted above, the difference of the Sxy(W) and Se(w) spect ra  yields the convolution 

I ( o ) = ~  So(~)S~(o~--.q)df~ (5.1) 
- - o o  

The values of I(w) found are shown by the dash-dot curves in the same figure. 

As a resu l t  of its smal lness ,  the modulation factor  can be found from the re la t ionship  between the maximum 
amplitudes of the c a r r i e r  frequency spect rum Se(w) and the side component spectrum I(w). The rat io of the frequency 
deviation to the c a r r i e r  frequency yields the degree of turbulence,  amounting to 7, 6, and 20% for the three given 
reg imes .  

Solving (5.1) for Sv(~), we find the velocity pulsat ion spect rum (Fig. 3). We see from Fig. 3 that for low-velocity 
flow (regime 1) the velocity pulsat ion spect rum is na r row and the osci l la t ion energy is small .  With increase  of the 
average s t r eam velocity the spect rum broadens,  although the osci l la t ion energy remains  smal l  in subcr i t ica l  flow 
(regime 3). On t rans i t ion  f rom subcr i t iea l  flow to superer i t i ca l  flow, the osci l lat ion energy increases  sharply and the 
spec t rum broadens (regime 4). 

The velocity pulsation spectra measured by the correlation method were compared with the spectra obtained by 
an inductive sensor [12] and a hot-wire anemometer [13]. The sensitivity of the latter instruments was considerably 
lower than in the measurements by the correlation method; therefore comparison was possible only for flows with high 
velocities. The results obtained by all these methods agreed to within • 
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The inductive sensor  cons is t s  of a pair  of 0 .5 - ram-d iamete r  electrodes,  spaced 0.6 mm apar t  and located in the 
field of a permanent  magnet  (magnet is outside the flow). The sensi t ive e lement  of the hot -wire  anemometer  was made 
in the form of a quartz f i lament  4 mm long and about 0.02 mm in d iameter .  

:/\  
g 5 i ~  

f 3 

0 g5 50 
w /  2r  , H z  

Fig. 3 

Similar  r e su l t s  were also obtained in a study of gaseous flows. Thus, in [14] a conventional sch l ie ren  system 
was used to obtain optical signals f rom two points in a subsonic cold a i r  jet. Optical s ignature  of the flow in the axial 
section was provided by a fine heated f i lament  located at a considerable  dis tance ups t ream in order  to identify the 
signals from a region which was smal l  in re la t ion to the jet d iameter .  The nature  of the recorded signals in this case 
is s imi l a r  to that shown in Fig. 2; however, the signal spect rum and the c ros s -co r re l a t ion - func t ion  spect rum are 
shifted into the higher frequency region (on the order  of one kilohertz) as a r e s u l t  of the higher s t r eam velocity 
Comparison of these resu l t s  with the hot-wire anemometer  measuremen t s  shows s i m i l a r  values.  

Of in te res t  is the application of this method to study of supersonic p lasma s t r eams ,  where it makes it possible to 
find both the velocity pulsat ions and the local value of the Mach number .  

In fact, the distance traveled by the acoustic wave, which is the optical nonhomogeneity,  re la t ive  to the 
recording device during the t ime t can be de termined:  

t t 

(0 = <~ t + f ~' (t) dt + f  ~ (t) dt (5.2) 

where c(t) is the velocity of the nonhomogeneity re la t ive  to the s t ream.  

Assuming v'(t) and c(t) s ta t i s t ica l ly  independent, we can find the var iance :  

t t 

2K~ (0) f (t - ~) no (~) d~ + 2Ko (0) f (t - ~) ~c (~) d~ (5.3)  (t)> 
o t) 

Consequently the maximum deviation of the coordinate f rom its average value at any t ime t will be defined by the 
quantity 

Omax = :~ ~ v  (0) + K c (0) t ( 5 . 4 )  

and the frequency deviation 

2Yt (0,~ 
a ~  = ~ ~m~ = •  ~xKo (0) + Kr ((~) (5.5) 

This express ion  can be reduced to the form 

Ao) v [ K (0) K c (0)]'/2 t t 'h ~ = ~ : [ ~ + - - ~ j  = ! l ~ + ~  ~ (5.6) 

where 6 is the degree of turbulence and M is the Mach number.  

Measurements  made in supersonic  argon p lasma flow [6] have shown that the use of cor re la t ion  analys is  makes it 
possible  to find both 5 and M, since the velocity pulsat ions modulate identically all the f requencies  of the signals being 
recorded,  while modulation resul t ing  from the re la t ive  motion of the acoustic waves affects only the high frequencies .  
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