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We examine the possibility of studying turbulent pulsations of the flow velocity by correlation and spectral
analysis of optical signals from two or more points of a stream.

1. Convective velocity measurements. Correlation analysis has been widely used for measuring the flow velocity
by means of various probes: hot-wire anemometers [1—3], inductive sensors [4], pressure sensors [3], and so on.
The convective flow velocity is found by correlation analysis of the signals obtained by these probes.

By convective velocity we usually mean the rate of fransport of the components of some field: pressure,
temperature, conductivity, or the velocity field itself. We can also speak of the convective velocity of the optical
fluctuation field.

If we record the fluctuations of some physical quantity at two points located along the stream direction, the time
shift of the peak of the corresponding cross-correlation function is customarily identified with the characteristic
transport time of this quantity from one measurement point to the other. If the pulsations are stationary the shift will
corregpond to the average nonhomogeneity travel time, i.e., their local-average transport velocity. If the fluctuations
are unsteady, fluctuations of larger amplitude yield a larger contribution to the shift of the cross-correlation curve
and thereby determine the magnitude of the measured convective velocity.

This technique for determining the velocity was used initially for measuring the convective velocity of the
velocity field itself, starting from the Taylor hypothesis on "frozen" turbulence. In accordance with this hypothesis, if
the turbulence intensity is not high the velocity pulsations at some point in the flow will be the result of transport
through the given point with the convective velocity of the spatial signature of the stream (here signature means the
velocity field itself), i.e.,

v(x5, ) =v(x— Vi, () (1.1)

where X is the coordinate of the point and V is the convective velocity. In this case the cross-correlation function of
the velocity pulsations at two points located at a distance L from one another along the stream has the form

R)=<w(x Do(x+L, t+ 1)y =<w(x, )v(x, t —L Vit (1.2)

It is obvious that for t = L/VL the velocity pulsations at the two points will be referred to the same phase and the
cross—correlation function will reach its maximum value. Hence follows directly the technique for determining the
convective velocity from the time shift of the peak of the velocity-pulsation cross-correlation function at two points.

However, Lin showed on the basis of the Navier-Stokes equations that the Taylor hypothesis is valid only if the
turbulence intensity, viscous forces, and tangential stresses are small. Otherwise it is necessary to account for the
influence of the average and fluctuating tangential stresses, which alter the turbulence structure continuously. Under
these conditions we can no longer speak of some constant convective velocity. It has been shown by several authors
[1—4] that we can speak only of the convective velocity V(k) of some definite wavenumber. Thus, if the velocity field is
considered as the finite sum of uncorrelated plane waves of different orientation and length with random amplitudes and
phases, then the convective velocity V, of a specific wave number can be defined as its most probable transport
velocity, i.e., for V = V,, the spectral density function W(k, V) reaches its peak,

{____awa(;; £ }V=Vc= 0 (1.3)

It is obvious that in hot-wire measurements this velocity will to some degree correspond to the time shift of the
peak of the cross-correlation function of filtered signals of definite frequency (more precisely, some finite narrow
frequency band).
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In this case the over-all convective velocity V, can be determined as the value for which

[Sa)
{ﬂ(#/l}vﬂ*:o, W (V)= S W (k, V) dk
—00
This velocity will not necessarily correspond to the shift of the peak of the over-all (unfiltered) cross-
correlation curve, since as we have noted previously this shift may be determined not by the transport velocity of the
most probable wave numbers but primarily by the transport velocity of the wave numbers corresponding to the
pulsations with maximum amplitude.

The correlation method was later used to measure the transport velocity of other physical fields, e.g., the
pressure fields [3].

In [4] a similar method was used to measure the convective velocity of the quantity oV in a plasma jet (o is the
plasma electrical conductivity; V is velocity). The oV fluctuations were detected with the aid of currents induced by
the fluctuations in measuring coils as the plasma traveled in an external magnetic field.

The trend toward remote measurement methods, which do not introduce disturbances into the stream, and also
the trend toward increased spatial resolution, has led to the use of the correlation method for optical measurements.
In this case the signal sources can be fluctuations of the refraction coefficient, brightness, density, impurity
concentration, and so on. The transport of the optical nonhomogeneities is identified with the transport of the gas
stream itself.

For example, in [5, 6] recordings were made of natural fluctuations of the luminosity of a plasma jet at two axial
points, and the shift of the cross-correlation function peak was used to calculate the propagation velocity of these
fiuctuations.

In [7] the convective velocity of the optical fluctuation field was determined from the shift of the peak of the
cross~correlation function of signals from two transmitted beams which were absorbed by the medium.

In order for absorption to take place, liquid nitrogen or water was sprayed into the stream to form a finely
dispersed fog. The beams were directed perpendicular to one another and to the flow axis, and the distance between
the beams in the flow direction was varied. The crogs-correlation function of the signals from two photodetectors was
found for different distances between the beams.

Thus, the correlation technique has been used in quite varied measurements as a technique for finding the
convective velocity of the quantities being measured. The primary characteristic is the time shift of the peak of the
cross~correlation function. The resulting value is the mathematical expectation of the velocities and does not yield any
representation of the scatter of the velocities around this value.

At the same time the cross~correlation function spectrum containg more complete information on the flow
velocity than can be obtained from the shift of the function peak alone.

The following section is devoted to examination of this question.
2. Effect of velocity pulsations on the frequency spectrum of optical fluctuations. We consider the random
uniform isotropic field N(x,t) of the optical nonhomogeneities of the medium in question, whose transport we identify

with the motion of the fluid itself under the assumption that it is incompressible.

As is known [8], such a field can be represented in the form of the superposition of waves of different orientation
with random amplitude and phase:

N(x)= Se“‘x 4z (k) (2.1)

Here k is the wave vector and Z is the complex amplitude and the integral extends over the entire wave vector
space. The temporal variations of the field can be described on the basis of the corresponding transport model.

In the case of the frozen turbulence model, now applied to the optical nonhomogeneity field, all the time
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variations of N(x,t) at a point of the stream are caused by transport of the spatial field distribution with constant
velocity. However, such a model does not allow us to find the velocity pulsations in the stream.

It is obvious that the more general model will be that in which the transport of the frozen field takes place with a
time-variable velocity. In this case we obtain in place of (1.1)

N(x, t) :N(x—iv(r)dr, o) (2.2)

With account for the given transport conditions, (2.1) takes the form

t
N(x, t) = {exp [ikgv(r)dr} dZ (k) (2.3)

- ]
If in this case v (t) = (v) + v/ (1), where (v} is the average velocity and v' (7) is the pulsative component, then

£
N(x, )= exp {ik[<v> t+ v er} dz (k) (2.4)
0
1t follows from (2.4) that N(x, t) is the result of frequency modulation by the random process v'(t) of the random
function e(x, t), equal to

e(x, 1) = Seik<v>de(k) (2.5)

This function corresponds to the signal without velocity pulsations (mode! of frozen field transported with
constant velocity). The existence of velocity pulsations leads to the appearance of frequency modulation. In this cage
the frequency deviation of each elementary harmonic of the process &(x,t) is proportional to the mean-square velocity
pulsation ¥{ »2> in the x~direction, and the effective modulation frequency is determined by the velocity pulsation
correlation interval, i.e., by the Euler integral time scale [9].

In fact, the Kampe de Feriet relation
t 9 3
@ =@ t+ v’ ar] > =202t — 1) Ro, (W) ar (2.6)
) o

is valid for the coordinate variance in (2.4). In (2.6) R, (7) is the correlation coefficient between the velocity
pulsations at different times and (»2) is the velocity variance.

Consequently, the amplitude of the modulating function will be the magnitude of the mean square velocity
pulsation, and the frequency deviation of each i-th elementary harmonic of the process &(x, t}) can be found from the
formula

2 T —
Ao =T Y05 = 25 V0D 2.7)

However, the effective modulation period in the model adopted will obviously be determined by the ratio of the
space scale A, for which particle motion takes place essentially only in one direction, to the magnitude of the mean-
square velocity pulsation

T, = AL 0> = A 02> [ 0 (2.8)

But the numerator on the right-hand side of (2.8) is simply the eddy diffusion coefficient D, which can be found
from (2.6) by passing to the limit as t — « [10]. Then

D=@@/2t=<vJg (2.9)
where &'E is the Euler integral time scale.
Substituting (2.9) in place of the numerator in the right~hand side of (2.8), we obtain

Tw=2JIg o Qn=1/9¢ (2.10)
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Thus the effective modulation frequency is determined directly by the Euler integral time scale.

This has definite physical meaning, since the magnitude of the integral time scale can serve as a measure of the
longest time interval in the course of which transport of the field space distribution takes place on the average in the
given direction, i.e., it will be the maximum modulation period.

It follows from (2.10) that the larger the integral time scale the lower the effective modulation frequency. In the
limiting case, when & g = «, @, =0, i.e., there is no modulation (transport of the frozen field with constant velocity).
On the other hand, when g E™ 0, @y — «, i.e., when the nature of the velocity pulsations approaches white noise,
the modulation frequency becomes infinitely large.

Thus, on the bagis of the model of the frozen field transported with variable velocity we can conclude that the
recording of the optical fluctuations includes information on the turbulence in the form of the modulating function.

3. Methods for separating the turbulence characteristics from the optical fluctuation records. In accordance with
the adopted transport model, the variation of the frequency of each elementary harmonic of the modulated process e(x,
t) is defined by the same modulating function vi(t), i.e.,

0 () = o; + %vx' 0 (3.1)
Then the elementary function has the form
: B
y; = V (w;) cos [co,-t 4= §%§—vx’(t)dt] 4+ iV (w;) sin [(Djt 4+ § 72 ux’(t)dt] (3.2)
Let
N Q, +a
vy (1) = v;vaei“vf, vV, = nS_av'(sz)dsz (v=0,+1,...+N)

Here V(Q) is white noise. Then
N
yi = V(mj)[cos ot — Bvem“tsin(ojt-l+iV(m,~)
v=—N -

N
: 2nV.
x [sinat+ 3 B cosapt], B =g (3.3)

ve=—N B2y

under the assumption of smallness of 3, equal to the sum of the 8,.

Performing the summation over all the elementary harmonics, we find the expression for the FM signal for the
case of modulation of one random process by another random process with small 8:

[o]

X(t) = S v (@) ¢t day — -

a8

V(o)) B! da;
o

~-00

g (t) [1 ’JF %}}%ﬂ_ VS(_ZQ) eiﬂt] — B(t) [1 _},. vx* (t):l (3 .4)
ve*(f) = 2mw, () / AQ

Thus, frequency modulation of the random process &(t) by the random process vg(t) in the case of small 8
reduces to the product of e(t) by v;‘;(t). The latter is some dimensionless velocity whose statistical characteristics,
however, will be completely identical to the statistical characteristics of v(t). Thus. we can say that the modulation
in this case reduces to the product of the random processes themselves, i.e., the modulation is of the amplitude
modulation type.

Let us consider what the condition of smallness of B means. Since 2n /M = @;/{vz), we obtain
9 V(@ .5
o <1 (3.5)
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The first fraction under the summation sign is the ratio of the modulated harmonic frequency to the modulating
frequency, and the second is the ratio of the amplitude of the corresponding velocity pulsation harmonic to the average
stream velocity. The first fraction characterizes the relationship between the average dimensions of the optical
nonhomogeneities and the eddies, the second represents the intensity of the turbulent velocity pulsations. Thus, the
assumption indicated above imposes a corresponding limitation on the ratio of the dimensions of the optical
nonhomogeneities to the dimension of the eddies as a function of the turbulence intensity. For low turbulence intensity
the ratio of the average dimensions of the nonhomogeneities to the dimensions of the eddies can be large, and
conversely, in the presence of high turbulence intensity the dimensions of the optical nonhomogeneities must be less
than the eddy dimensions.

Expression (3.4) makes it possible to find the optical fluctuation spectrum at a fixed stream point in terms of the
spectra of the modulated and modulating processes.

In fact, if the processes &(t) and v, (t) are statistically independent the correlation function X(t) of the frequency-
modulated process will be

Ky (1) = Kee (7) + Kpupr (7) Kee (1) (3.8)

Hence

Se () = +71_ Q Sp+ (Q) Se (0 — Q) dQ (3.7)

—co

Since Sy*(Q) and 8y(9), after beingnormalized, are identical, we can using (3.7) separate the velocity pulsation
spectrum if Sg(w) is known, and the latter, as will be shown later, can be found by using the structure function.

Thus, in the case of ideal realization of the adopted frozen-field model the single-point correlation and the
corresponding spectrum can be used to identify the turbulence characteristics. However, velocity pulsations having a
different direction with relation to the average velocity vector modulate the basic process differently. We can identify
the influence of pulsations having a given direction (longitudinal pulsations, for example) by processing the signals
from two points. In this case the cross-correlation function identifies the frequency-modulated signal in the given
direction, and therefore the cross-correlation function spectrum will carry information on both the magnitude of the
mean-square velocity pulsation in the given direction and the one-dimensional spectra of the modulated and modulating
processes [6]. Moreover, the structure function of the signals from two points of the stream identifies the modulated
signal in the given direction and its spectrum will correspond to the Sg(w) spectrum.

In fact, let us assume that at the first point of the stream there is recorded the signal X, () = [t + »* (Ble (1),
and at the second point the same signal shifted in time by the amount 5:

X () =M +o* (¢ +m)le(t +m)

The time shift  is a result of the fact that a particular nonhomogeneity, after passing the first point with the
velocity corresponding to the field transport velocity at the time t, passes the second point with the velocity
corresponding to the transport velocity at the time (t + n).

Then
Dy, (m) = <[ X1 (1) — X (2 -5 )%
== 2 [Ksa (0 “‘l“ Kss (0) Kv*b*( )] - ZKEE(T]) [1 + Kv*‘u*(n)]

(3.8)

We see from (3.8) that velocity pulsations which are slow in comparison with n have no effect on the structure
function. In this case, if the spectral density of the velocity pulsations with frequency higher than 1/7 is negligibly
small the structure-function spectrum will correspond to the spectrum of the stream "signature" pulsations, i.e., it
will correspond to the spectrum of the frozen field transported with constant velocity.

Moreover, it follows from (3.8) that in the absence of velocity pulsations the cross-correlation function coincides
with the structure function to within a constant factor. Thus, comparison of the spectra of the structure and cross-
correlation functions makes it possible to establish the presence or absence of the modulation effect owing to velocity
pulsations.
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4. Measured parameters. The following assumptions were made in the method in question for the measurement
of turbulence:

1) the optical nonhomogeneity field is frozen within the limits of the measurement baseline;
2) the recorded optical fluctuations are stationary functions in the course of the realization time;

3) the velocity pulsations are slowly varying time functions in comparison with the modulated process (signature
of the frozen field, transported with constant velocity);

4) the optical nonhomogeneity field and the velocity field are statistically independent.

As noted previously, under these assumptions the average stream velocity is determined by the time
corresponding to the shift of the peak of the cross-correlation function of the optical signals from the two stream
points. ‘

The frequency deviation in the cross-correlation-function spectrum is proportional to the mean-square velocity
pulsation. If we assume that the cross spectral density function Sxy(w) repeats the frequency probability density
distribution law for the frequency-modulated signal in a given direction, then the magnitude of the effective deviation
Aweff can be calculated using the formula

Ay = {OSO (@ — <@} S, (@) dmil [°§ Sy (@) dco]_l 4.1

—00

The latter is in turn related with the magnitude of the mean-square velocity pulsation by (2.7).

Since the most probable (carrier) frequency of the modulated process is proportional to the average stream
velocity, the ratio of the frequency deviation to the carrier frequency yields directly the relative intensity of the
turbulence, i.e.,

Ao (2N 4.2)

o0 T <oy
Relation (3.7), considered as an expression for the spectrum of the frequency-modulated signal in a given
direction (to which corresponds the cross spectral density of the optical signals from the two points), makes it possible
to identify the spectrum of the veloeity pulsations in the given direction., In this case, as indicated above, it is advis-
able to compare Sxy(w) with the structure-function spectrum Sg () in order to refine the boundaries of the modulated
process.

Along with the local flow characteristics, identifiable for a given flow direction by analysis of the signals from
two points of the stream, if there are a large number of measurement points it is obviously possible to obtain such
parameters as turbulent stresses, flow~field time-variation characteristics, average eddy lifetime, and so on.

5. Examples of experimental results. Figure 1 shows oscillograms representing the intensity of the light
scattered by the natural microscopic suspended matter present in a water stream. The stream is illuminated by a light
beam from a helium-neon laser directed along the stream. The scattered radiation is recorded from two flow regions
with linear dimension of order 0.3 mm, spaced 2.16 mm from one another in the streamwise direction, for two flow
velocities: 9.4 and 35.2 cm/sec. The points were located on the centerline of a rectangular channel with cross section
12.5 X 28.6 mm,

We see from the oscillogram that the signals at the two points are highly correlated, and the signal from the
downstream region lags by some time relative to the signal from the first region.

Figure 2a shows curves of estimates of the cross-correlation functions for four flow regimes in the same
channel. The flow velocities are, respectively, 9.4, 17.6, 18.8 and 35.2 cm/sgc (Fig. 1 shows the signals for flows 1
and 2).

We see that increase of the flow velocity leads to reduction of the time shift corresponding to the peak of the
cross~correlation function. The position of this peak can be used to determine the average flow velocity.
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The average velocity values obtained by the correlation method agree to within £2.7% with the values found by the
frequency method [11] and those found by measuring the water discharge rate; the latter values were determined to

within +2%.
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Curve 3 in Fig. 2a corresponds to subcritical flow, and curve 4 is for supercritical flow. We see from these
curves that the small change of the average velocity upon transition through the critical value alters markedly the
frequency of the periodic component of the cross-correlation function.
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The cross—correlation-function spectra Sxy(w) for the first, third, and fourth flow regimes are also shown in
Fig. 2b (solid curves). Also shown are the curves of the structure-function spectrum Se (w) (dashed curves). As we
noted above, the difference of the Sxy(w) and S;(w) spectra yields the convolution

T
—00

I(m):i S 5,(Q) 8, (0 —Q)do (5.1)

The values of I(w) found are shown by the dash-dot curves in the same figure.

As a result of its smallness, the modulation factor can be found from the relationship between the maximum
amplitudes of the carrier frequency spectrum Selw) and the side component spectrum I{w). The ratio of the frequency
deviation to the carrier frequency yields the degree of turbulence, amounting to 7, 6, and 20% for the three given

regimes.

Solving (5.1) for Sy(Q), we find the velocity pulsation spectrum (Fig. 3). We see from Fig. 3 that for low-velocity
flow (regime 1) the velocity pulsation spectrum is narrow and the oscillation energy is small. With increase of the
average stream velocity the spectrum broadens, although the oscillation energy remains small in subcritical flow
(regime 3). On transition from subcritical flow to supercritical flow, the oscillation energy increases sharply and the

spectrum broadens (regime 4).

The velocity pulsation spectra measured by the correlation method were compared with the spectra obtained by
an inductive sensor [12] and a hot-wire anemometer [13]. The sensitivity of the latter instruments was considerably
lower than in the measurements by the correlation method; therefore comparison was possible only for flows with high
velocities. The results obtained by all these methods agreed to within 15%.
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The inductive sensor consists of a pair of 0.5-mm-diameter electrodes, spaced 0.6 mm apart and located in the
field of a permanent magnet (magnet is outside the flow). The sensitive element of the hot-wire anemometer was made
in the form of a quartz filament 4 mm long and about 0.02 mm in diameter.
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Fig. 3

Similar results were also obtained in a study of gaseous flows. Thus, in [14] a conventional schlieren system
was used to obtain optical signals from two points in a subsonic cold air jet. Optical signature of the flow in the axial
section was provided by a fine heated filament located at a considerable distance upstream in order to identify the
signals from a region which was small in relation to the jet diameter. The nature of the recorded signals in this case
ig similar to that shown in Fig. 2; however, the signal spectrum and the cross-correlation-function spectrum are
shifted into the higher frequency region (on the order of one kilohertz) as a result of the higher stream velocity
Comparison of these results with the hot-wire anemometer measurements shows similar values.

Of interest is the application of this method to study of supersonic plasma streams, where it makes it possible to
find both the velocity pulsations and the local value of the Mach number.

In fact, the distance traveled by the acoustic wave, which is the optical nonhomogeneity, relative to the
recording device during the time t can be determined:

i

t
t=wi+{voa+{cpa (5.2)
G . 0
where c(t) is the velocity of the nonhomogeneity relative to the stream.

Assuming v'(t) and c(t) statistically independent, we can find the variance:

t t
& (1) = 2K, (0) ﬁ (¢ —) R, (v) dv 4 2K (0) 3 (t—7) R (v) dv (5.3)
1

1

Consequently the maximum deviation of the coordinate from its average value at any time t will be defined by the
guantity

Opax == Y K, O+ K (0)¢ (5.4)
and the frequency deviation

2 ,

Ao, = *, Omax = 4 <v; V K, 0+ &, (© (5.5)
This expression can be reduced to the form
Ao, K_(0) K_(0) ]/ . 1 7
] D
w, [ (% <cv>2 J ‘.62 142] <5.6)

where 6 is the degree of turbulence and M is the Mach number.
Measurements made in supersonic argon plasma flow [6] have shown that the use of correlation analysis makes it

possible to find both 6 and M, since the velocity pulsations modulate identically all the frequencies of the signals being
recorded, while modulation resulting from the relative motion of the acoustic waves affects only the high frequencies.
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